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Part I
The ‘calcium_all’ data is a subset of the ‘calcium’ dataset that can be found in the ‘lava’ R package. This
dataset contains information collected from an RCT aimed at comparing calcium vs placebo with respect to
changes in bone mineral density measures (g/cm2) over time. For this purpose BMD measurements were
taken on girls at approximately every 6th months in 3 years. The “calcium_all” dataset has information on
the following variables:

• bmd: bone mineral density (BMD) in g/cm2
• group: treatment group (‘C’=calcium, ‘P’=placebo)
• person: person (girl) ID
• visit: visit number (time point)
• age: age at each visit in years

Question 1:
Using the ‘calcium_allL’ dataset please answer the following questions, assuming unstructured covariance
pattern:

a) Describe the missing patterns you see in the data (if any).
b) Plot the observed data (means and spaghetti plots). What do you observe?
c) Conduct a Mean Response Profiles analysis (Model 1) with only time and treatment group. What is

your overall conclusion about the changes in the mean response over time and the effect of the treatment
group on those changes?

d) Suppose that you are mainly interested in describing the trends in the mean responses over time
adjusting for age. Find a model for the mean that best fits your data. [HINT: Consider only up to
two-way interactions of treatment with time and age. Start with the ‘full’ model and follow a backward
elimination procedure based on the partial p-values of the regression coefficients.]

Solution

a) Looking at the data using the ‘xtset’ and ‘xtdescribe’ commands in STATA, we see that the data is
unbalanced with respect to the number of bone mineral density (BMD) observations for each subject.
That is, while some subjects had observations for all five visits, others did not. Specifically, out of 112
individuals there were, 7, 6, 5, and 3, who only had observations up to the first, second, third, and
fouth visits, respectively.

b) The first two plots below, graphed in STATA, display the trajectories (in BMD over time) for the first
ten individuals and the spread of BMD at each visit for each treatment group (in the form of boxplots),
respectively. The spaghetti plot shows us that despite variations in response becoming slightly greater
with each visit, individuals display a noticeable range of BMD values at baseline, which follow very
similar increasing trends over time. Similarly, the boxplots suggest that despite the placebo group
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having overall smaller BMD’s, the change in response over time is strikingly similar between both
groups.
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These observations are further confirmed by the graph below, which shows more explicitly the
change in mean responses over time for each treatment group. Precisely, we notice that BMD
means in both groups grow at very similar rates, although the treatment group shows a slightly
more rapid increase, making the difference in means at the last visit (5) a bit larger than at
baseline.
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c) A Mean Response Profiles analysis with only time and treatment group was fitted using STATA, the
code for which is given below. This marginal (population-average) model assumes no random effects;
unstructured residuals; a discrete measure of time (visits); and uses restricted maximum likelihood
estimation to derive coefficients for time, treatment, and their interaction.

Let:

• Yij be the outcome of interest (random variable), bone mass density (BMD), for the ith

individual in the study on the jth visit, where i = 1, 2, ..., 112 and j = 2, 3, ..., 5
• Vij be the discrete time covariate denoting the jth visit in the study with Vi1 as the baseline

and reference group
– *Note: each Vij is binary and indicates the jth visit for the ith individual when Vij = 1

• Xi1 be the binary predictor for group, where Xi1 = 0 indicates treatment (reference group),
and Xi1 = 1 indicates placebo

Model 1:

mixed bmd tx##visit || person: , noconst residuals(unstructured, t(visit)) reml
nolog

E[Yij ] = β0+β1·Vi2+β2·Vi3+β3·Vi4+β4·Vi5−β5·Xi1−β6·(Vi2∗Xi1)−β7·(Vi3∗Xi1)−β8·(Vi4∗Xi1)−β9·(Vi5∗Xi1)

E[Yij ] = 0.8804545 + 0.0270333 · Vi2 + 0.056471 · Vi3 + 0.0830392 · Vi4 + 0.1060277 · Vi5

−0.0103844 ·Xi1 − 0.0069691 · (Vi2 ∗Xi1)− 0.0123047 · (Vi3 ∗Xi1)
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−0.0124964 · (Vi4 ∗Xi1)− 0.0189692 · (Vi5 ∗Xi1)
From these coeffients we see that with each visit, BMD increases by βk − βk−1, k 6= 0 for the
treatment group. That is, BMD increases by:

• 0.0270333 from the first (baseline) to the second visit;
• 0.056471− 0.0270333 = 0.0294377 from the second to the third visit;
• 0.0830392− 0.056471 = 0.0265682 from the third to the fourth visit; and
• 0.1060277− 0.0830392 = 0.0229885 from the fourth to the fifth visit.

For the placebo group, we see similarly that BMD increases by:

• 0.0270333− 0.0069691 = 0.0200642 from the first (baseline) to the second visit;
• (0.056471− 0.0123047)− (0.0270333− 0.0069691) = 0.0241021 from the second to the third

visit;
• (0.0830392− 0.0124964)− (0.056471− 0.0123047) = 0.0263765 from the third to the fourth

visit; and
• (0.1060277− 0.018969)− (0.0830392− 0.0124964) = 0.0165159 from the fourth to the fifth

visit.

Thus, based on this model, the rate of increase in mean response over time is almost constant for
both groups.

d) To find a model for the mean response (BMD) over time (adjusting for age) that best fits the data, we
use a backward elimination based on the partial p-values of the regression coefficients, starting with the
largest (“full”) model possible for our purposes (M1). Using STATA, we obtain the following parametric
curve models (continuous time) sequentially, via this model selection procedure:

M1: (two-way interactions of treatment with time and age)
mixed bmd tx##c.visit tx##c.age || person:, noconst residuals(unstructured,
t(visit)) reml nolog

M2: (two-way interaction of treatment with time, age)
mixed bmd tx##c.visit age || person:, noconst residuals(unstructured,
t(visit)) reml nolog

Given the statistical significance of the treatment and time (visit) interaction and age coefficients,
the best fitting model for the mean response (BMD) over time is M2.

Question 2:
Start with a simple model assuming only a linear trend over time, the main effect of treatment, no interaction
between time and treatment, and no adjustment for other covariates.

a) Select the model that best fits the covariance structure of the data between unstructured and exchange-
able.

b) Then fit the model that best describes the trends in the mean responses over time.
c) Is the final “best” model for your data the same with the one resulted from the process followed in

Question 1?

NOTE: In this exercise note how the standard errors and the quantities tightly connected with them (p-values,
and CIs) change with the choice of the covariance model. Always remember that the choice of the covariance
model may affect the model selection procedure for the mean and vice versa.

Solution

a) Starting with a simple parametric curve model for the mean response, we fit unstructured and
exchangeable covariance structures in STATA:

Unstructured Covariance:
mixed bmd tx visit || person: , covariance(unstr) reml nolog
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Exchangeable Covariance:
mixed bmd tx visit || person: visit, covariance(exch) reml nolog

Given the reulting BIC values, we find that the covariance structure that best fits the model is
that of unstructured covariance.

b) Holding this covariance pattern constant, we use backward elimination and BIC values to choose
between the following models:

M1: mixed bmd tx##c.visit tx##c.age || person: , covariance(unstr) reml
nolog

M2: mixed bmd visit tx##c.age || person: , covariance(unstr) reml nolog

M3: mixed bmd tx##c.age || person: , covariance(unstr) reml nolog

Based on the partial p-values of the regression coefficients, as well as BIC comparisons, we find
that M3 is the best fitting model. That is, a model that uses restricted maximum likelihood
estimation, takes age as a continuous measure of time (finding significance between the interaction
of age and treatment), and assumes an unstructured covariance pattern (random intercept and
constant slope).

c) This final “best” model for the data differs from the one resulted from the process followed in Question
1, primarily in that it accounts for between-subject variation. That is, this model is a mixed effects
model with an unstructured covariance pattern, while the other is marginal (population-average) model
with no covariance structure (random effects) and unstructured residuals. Moreover, the model from
Question 1.d finds significance in using “visit” as a (continuous) measure of time and includes age, while
the one fit here prioritizes “age” in the same way, excluding the “visit” variable altogether.

Question 3:
Interpret the regression coefficients from Model 1 and the best model(s) for the mean resulted from Question
1.d and Question 2. What is your final conclusion about the changes in the response over time between the
two treatment groups?

Solution

Let:

• Yij be the outcome of interest (random variable), bone mass density (BMD), for the ith individual in
the study on the jth visit, where i = 1, 2, ..., 112 and j = 2, 3, ..., 5

• Vij be the discrete time/visit covariate (in the first model) denoting the jth visit in the study with Vi1
as the baseline and reference group
– *Note: each Vij is binary and indicates the jth visit for the ith individual when Vij = 1

• Vi be the continuous time/visit covariate (in the second model) denoting the measurement time point
(visit) for the ith individual, with Vi = 1 as the baseline

• Xi1 be the binary predictor for group, where Xi1 = 0 indicates treatment (reference group), and Xi1 = 1
indicates placebo

• Xi2 be the continuous covariate for age
• Zi ∗ bi be the random effects part of the model, where Zi (if present) are time-varying predictors

(subset of Xi) for which the coefficients, bi, give the ith individual’s deviation from the population mean
response (varying slopes and/or intercepts)

Model 1:
mixed bmd tx##visit || person: , noconst residuals(unstructured, t(visit)) reml nolog

E[Yij ] = β0+β1·Vi2+β2·Vi3+β3·Vi4+β4·Vi5−β5·Xi1−β6·(Vi2∗Xi1)−β7·(Vi3∗Xi1)−β8·(Vi4∗Xi1)−β9·(Vi5∗Xi1)

E[Yij ] = 0.8804545 + 0.0270333 · Vi2 + 0.056471 · Vi3 + 0.0830392 · Vi4 + 0.1060277 · Vi5
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−0.0103844 ·Xi1 − 0.0069691 · (Vi2 ∗Xi1)− 0.0123047 · (Vi3 ∗Xi1)

−0.0124964 · (Vi4 ∗Xi1)− 0.0189692 · (Vi5 ∗Xi1)

Model 2: (Question 1.d)
mixed bmd tx##c.visit age || person:, noconst residuals(unstructured, t(visit)) reml
nolog

E[Yij ] = β0 + β1 · Vi − β2 ·Xi1 + β3 ·Xi2 − β4 · (Vi ∗Xi1)

E[Yij ] = 0.4471778 + 0.0074499 · Vi − 0.0062377 ·Xi1 + 0.0383463 ·Xi2 − 0.0042865 · (Vi ∗Xi1)

Model 3: (Question 2)
mixed bmd tx##c.age || person: , covariance(unstr) reml nolog

E[Yij |bi] = β0 + β1 ·Xi1 + β2 ·Xi2 − β3 · (Xi1 ∗Xi2) + bi0

E[Yij |bi] = 0.274753 + 0.0869336 ·Xi1 + 0.0547895 ·Xi2 − 0.0089102 · (Xi1 ∗Xi2) + bi0

Where:

• V ar(bi0) = 0.0045157
• Thus, a 95% CI for β0 is given by 0.274753 ± 1.96

√
0.0045157 = 0.274753 ± 0.1317075 ≈

[0.143043, 0.406463]

Coefficient Interpretation:

In the first model, β0 represents the population mean response (bone mass density) at baseline (the first visit)
for those in the treatment group. Since time is continuous and measured differently in the last two models
however, with the baseline not being equal to 0 in either case (and age included, despite being constant
among subjects), the interpretation of β0 is not so straightforward. That is, the population mean response
for the treatment group at baseline is given by β0 + β1 + β3 ·Xi2, and β0 + β2 ·Xi2 in the second and third
models, respectively. In Model 3 however, since it is not a marginal model, we see specifically that the ith

individual’s BMD at baseline is given by β0 + β2 ·Xi2 + b0i, where b0i is the individual’s specific deviation
from the population mean response at the starting age (for the treatment group). With V ar(bi0) = 0.0045157,
it follows that the 95% CI for β0, namely [0.143043, 0.406463], gives the between-subject variation in the
model’s intercept. As this assumes an age of 0, it is more reasonable to understand a subject i’s response
at baseline as 0.0547895 ·Xi2 plus some number between [0.143043, 0.406463] 95% of the time for those in
the treatment group. Looking at the expected mean responses at baseline (visit 1 or age ≈ 11) between
all three models, we see that predictions are relatively consistent, with discrepancies likely resulting from a
difference in measures of time, and the inclusions of age and a covariance structure (transition from marginal
to mixed-effects models).

Model 1:

• treatment : 0.8804545
• placebo : 0.8804545− 0.0103844 = 0.8700701

Model 2: (Question 1.d)

• treatment : 0.4471778 + 0.0074499 + 0.0383463 ∗ (11) = 0.876437
• placebo : 0.4471778 + 0.0074499− 0.0062377 + 0.0383463 ∗ (11)− 0.0042865 = 0.8659128

Model 3: (Question 2)

• treatment : 0.274753+0.0547895∗(11)+b0i = 0.8774375+b0i, for b0i ∈ [−0.1317075, 0.1317075]
• placebo : 0.274753 + 0.0869336 + 0.0547895 ∗ (11) − 0.0089102 ∗ (11) + b0i = 0.8663589 +
b0i, for b0i ∈ [−0.1317075, 0.1317075]
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The remaining coefficients in the first model, as mentioned previously, show us that with each subsequent
visit, BMD increases by βk − βk−1, k 6= 0 for the treatment group. That is, BMD increases by 0.0270333 from
the first (baseline) to the second visit, by 0.056471− 0.0270333 = 0.0294377 from the second to the third visit,
and so on. The same observation can be made with regards to the placebo group which display overall smaller
outcomes, but changing in a very similar way over time (as shown in Question 1). The remaining coefficients
in the second model show that BMD increases by roughly 0.0383463 g/cm2 for every unit increase in age for
both treatment groups, and by an additional 0.0074499 g/cm2 and 0.0074499− 0.0042865 = 0.0031634 g/cm2

for every unit increase in visit, for those in the treatment and placebo groups, respectively. The remaining
coefficients in the third model on the other hand, show that BMD increases by roughly 0.0547895 g/cm2 for
every unit increase in age in the treatment group, and by approximately 0.0547895− 0.0089102 = 0.0458793
g/cm2 for every unit increase in age in the placebo group. Thus, given all three models’ coefficients, we
see that changes in the response over time between the two treatment groups is very similar. Although, it
may be safe to assume a slightly higher rate of increase for the treatment group, which also demonstrated
slightly larger BMD measurements at baseline. The third and best fitting model outlines this observation
more explicitly, which we notice in the plots shown above.

Part II
The ‘cd4.dta’ dataset includes data from a randomized, double-blind study of AIDS patients with advanced
immune suppression (CD4 counts of ≤ 50 cells/mm3) (Henry et al., 1998). Detailed description of this study
can be found in your ‘Applied Longitudinal Analysis’ text book (p.228). For the purposes of the analyses we
will collapse the treatment groups into two broader categories: a dual therapy (regimens 1, 2, and 3) versus a
triple therapy (regimen 4).

Question 4:
Using the ‘cd4’ dataset please answer the following questions:

a) Create spaghetti plots to explore the patterns of the individual trajectories over time, by treatment
group. What do you observe?

b) Based on the plots of the observed data what model would you prefer to fit to express the changes in
the primary outcome (log of CD4 counts) over time and any differences between the two treatment
groups? Explain.

Solution

a) The first two spaghetti plots below give us a glimpse into the considerable amount of data missing. It
is evident that both treatment groups have several individuals lacking measurements in more than one
visit, which makes this data significantly unbalanced. Moreover, these graphs highlight appreciable
differences in subject observations at baseline as well as fluctuating responses over time, making it
difficult to identify specific patterns between groups. The two-way scatter plot (third plot below), gives
us a better overview of the general trends in the data based on treatment group. However, given the
amount of missing data and between-subject variation, it is hard to tell whether these means could be
biased or in fact representative of true population averages. Given all three plots, it seems that there
could be overall higher log(cd4) levels with more sporadic behaviors/responses over time for subjects
in the triple treatment group, but definitive claims regarding patterns in the outcome can’t be made
without a more extensive analysis of the data.
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b) Not only would a marginal model be inappropriate and potentially misleading given the substantial
amount of missing data observed, but fitting a population-average model would (as did the two-way
scatter plot) fail to capture the notable between-subject differences we suspect are present and within-
individual changes.Thus, based on what was gathered from the plots above, it seems that a mixed
effects model with an unbalanced covariance structure would be more suitable for the data.

Question 5:
Try to fit a marginal model to describe the trends in the mean responses over time by treatment group. For
the mean model consider only a linear trend, and test whether the changes over time are different among the
treatment groups without adjusting for any other covariates in the model. For the covariance pattern assume
unstructured and exchangeable. What do you observe? Do you think that a marginal model is appropriate
for analyzing these data? Explain.

Solution

Marginal Model (Unstructured Covariance):
xi: mixed logcd4 i.tx*time || id: , noconst covariance(unstr) reml nolog

Marginal Model (Exchangeable Covariance):
xi: mixed logcd4 i.tx*time || id: , noconst covariance(exch) reml nolog

The marginal parametric curve models fit via restricted maximum likelihood estimation, assuming unstructured
and exchangeable covariance patterns (in STATA), both yielded the same following output:

logcd4 Coefficient Std. err. z P> |z| [95% conf. interval]
_Itx_2 .0201841 .0547426 0.37 0.712 -.0871094 .1274776
time -.0105755 .0013910 -7.60 0.000 -.0133019 -.0078491
_ItxXtime_2 .0115745 .0027262 4.25 0.000 .0062312 .0169178
_cons 2.983828 .0276616 107.87 0.000 2.929613 3.038044

9



As marginal models make no assumptions about covariance patterns or subject-specific outcomes, it is not
surprising that both models would produce identical results. Specifically, the randomness found within the
data, not accounted for by the fixed effects of these models is given by the residuals, which were estimated to
have the following variance:

Random-effects parameters Estimate Std. err. [95% conf. interval]
var(Residual) 1.142763 .0227734 1.098988 1.188281

Although p-values demonstrate statistically significant coefficients in this model, the high residual variance
indicates that there is a substantial amount of information that is not being accounted for by a mere
“population-average”. This sheds light on the limitations of a marginal model for explaining this data and
provides sufficient evidence in favor of a mixed-effects model.

Question 6:
Assume the following mixed-effects model to the data:

E[Yij |bi] = β0 + β1 · ti + β2 · t2i + β3 · trt + β4 · age + β5 · gender

+β6 · (ti ∗ trt) + β7 · (t2i ∗ trt)

+β8 · (age ∗ trt) + β9 · (gender ∗ trt)

+(Zi ∗ bi)

Where:

• tij is the time point at which the jth measurement is taken for individual i (with tij at
baseline)

• trt is the treatment group (1 =triple, 0 =dual therapy)
• Yij is the log(cd4) for individual i
• Zi ∗ bi is the random effects part of the model

Fit four different models for the covariance in the data, assuming the following random effects:

a) a random intercept
b) a random slope for time t
c) a random intercept and random slopes for time t, and t2
d) random intercept and random slopes for time t, t2, and age

Answer the following questions:

1) Can you assume a random slope for gender? Explain.
2) Plot the observed trajectories of four randomly selected individuals; two from the dual and two from

the triple therapy. Compare these observed trajectories with the respective model predictions.
3) Which of the four models best fits the data? Explain.

Solution

The following models were fit in STATA:

Model (a):
xi: mixed logcd4 i.tx*time i.tx*time2 i.tx*age i.tx*i.gender || id: , covariance(unstr)
reml nolog

Model (b):
xi: mixed logcd4 i.tx*time i.tx*time2 i.tx*age i.tx*i.gender || id: time,
noconst covariance(unstr) reml nolog
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Model (c):
xi: mixed logcd4 i.tx*time i.tx*time2 i.tx*age i.tx*i.gender || id: time time2,
covariance(unstr) reml nolog

Model (d):
xi: mixed logcd4 i.tx*time i.tx*time2 i.tx*age i.tx*i.gender || id: time time2
age, covariance(unstr) reml nolog

1) A random slope could not be assumed for gender as it is not a time-varying covariate. Under the
assumption that all subjects preserve their gender throughout the course of the study, it would not make
sense to look for variances or subject-specific deviations in the outcome for “non-varying” predictors.
Since time-invariant covariates only pertain to between- and not within-subject differences, their
inclusion in the the Zi matrix of covariates would not impact a subject-specific rate of change in
response over time (slope), but perhaps rather the intercept term.

2) To select two random individuals from each group, the following lines were executed in STATA:

generate dt = (tx == "dual") generate tt = (tx == "triple")

generate random = runiform()

sort dt random generate sample_d = dt & (_N - _n) < 2

sort tt random generate sample_t = tt & (_N - _n) < 2

list if sample_d == 1 list if sample_t == 2

The individuals from the dual treatment group sampled in this way had ID’s of 1065 and 1211,
while those in the triple treatment group has ID’s of 299 and 720. Moreover, to store all predicted
values for which to subset (based on random individuals selected) and graph later on, the following
commands were run after fitting each model:

predict pred_x, fitted

Using “xtline” to graph each “pred_x” value for each treatment group along with the observed
(“true”) values, we obtain the four graphs below. The individual predicted trajectories demonstrate
very similar predictions, with the most extreme values being obtained from Model (b) (which may
be due to the fact that it has a constant slope and places more weight on randomized slopes).
Moreover, we see that the least extreme and more generalized model is Model (a). This makes
sense as it is a marginal model that predicts population-based means of the primary outome over
time. When compared to the observed trajectories, we notice that the closest in approximating the
observed data is either Model (c) or Model (d), both of which produce nearly identical predictions.
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3) Based the plots above, it is likely that the best fitting model is either Model (c) or Model (d). The
fact that these models produce such similar results is most likely due to “age” having little (if any)
influence on subject-specific variations over time. To decide between the two models, we store estimates
using “estimate store model_x” after fitting each model and compare their BIC values produced
after executing “estimates stats model_a model_b model_c model_d” in STATA:

Model N ll(null) ll(model) df AIC BIC
model_a 5,036 . -6092.327 12 12208.65 12286.95
model_b 5,036 . -6893.403 12 13810.81 13889.10
model_c 5,036 . -5973.919 17 11981.84 12092.75
model_d 5,036 . -5962.123 10 11944.25 12009.49

Despite Models (c) and (d) having very similar BIC values, the fact that Model (c)’s is lower
indicates that it is the better fitting model. Specofically, Model (c) takes the following form:

Model (c):
xi: mixed logcd4 i.tx*time i.tx*time2 i.tx*age i.tx*i.gender || id: time time2,
covariance(unstr) reml nolog

E[Yij |bi] = β0 + β1 · ti + β2 · t2i + β3 · trt + β4 · age + β5 · gender

+β6 · (ti ∗ trt) + β7 · (t2i ∗ trt)

+β8 · (age ∗ trt) + β9 · (gender ∗ trt)

+bi0 + bi1 · ti + bi2 · t2i
E[Yij |bi] = 2.55892−0.0042885·ti−0.0002801·t2i +0.3198502·trt+0.0101967·age+0.0182811·gender

+0.0372233 · (ti ∗ trt)− 0.0007155 · (t2i ∗ trt)

−0.0009088 · (age ∗ trt)− 0.4143223 · (gender ∗ trt)

+bi0 + bi1 · ti + bi2 · t2i
Where:

• the reference group for treatment is “dual therapy” (trt = 0)
• the reference group for gender is 0
• V ar(bi0) = 0.5755263
• V ar(bi1) = 0.0017772
• V ar(bi2) = 9.09e− 07

Question 7:
Based on the best model from the previous question what is your overall conclusion about the effect of the
two treatments on the change of the log(CD4) over time?

Solution

The “best” fitting model identified in Question 7 not only indicates that the “age” covariate has little to
no effect on subject-specific changes of log(CD4) over time, but that a mixed-effects model is far more
representative of the patterns and overarching complexity present in the data than is a marginal model.
Specifically, Model (c)’s coefficients show that adjusting for age and gender, the change in log(CD4) over time
is negative for the dual therapy treatment group, while generally positive for the triple therapy treatment
group. For this reason, it is likely that the triple treatment is the more effective of the two in increasing
log(CD4).
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